
GNFormer: Structral Transformer for Large Graphs

Shuyang Fang1, Qian Xie 2, Jingfeng Li2, Pengfei Lin2, Runheng Lin2

1School of Informatics, Xiamen University
2Artificial Intelligence Research Institute, Xiamen University

23020241154390, 36920241153265, 36920241153228, 36920241153235, 36920241153236

Abstract

Graph Transformers adapt the concept of traditional trans-
formers to the domain of graphs, significantly harnessing
the advantages of the transformer’s self-attention mechanism
for effective node feature extraction and updating. How-
ever, Graph Transformers also face scalability challenges
due to the quadratic complexity of the self-attention mech-
anism, making their application to large graphs problem-
atic. Our research primarily focuses on representing large
graphs, aiming to address the scalability issues of Graph
Transformer models. First, We propose GNFormer, a Graph
Transformer model that incorporates structural and positional
encodings, using single-layer global attention to enhance pro-
cessing efficiency and introducing a stochastic mini-batch
training method to accommodate large-scale graph data. Sec-
ond, we validate GNFormer’s effectiveness on medium and
large graph datasets, demonstrating its superiority in node
classification tasks over baseline models. Additional compar-
ative tests confirm the significance of its modules and overall
efficiency in time and resource usage.

Introduction
Since the Transformer(Vaswani et al. 2017) was introduced,
it has proven effective in processing sequential data, and
its architecture has been widely adopted in the field of
natural language processing.(Devlin 2018)Subsequently, re-
searchers have continued to investigate the potential applica-
tions of the Transformer in various fields. In the field of com-
puter vision, various adaptations of the Transformer have
also demonstrated strong performance in processing non-
sequential data, such as images. These successful implemen-
tations have spurred the advancement of Transformers in
the graph domain, now recognized as Graph Transformers
(GTs).

Graph neural networks, the classical models for pro-
cessing graphs, excel at capturing local structural informa-
tion. However, they typically struggle with long-range de-
pendencies between nodes and are susceptible to phenom-
ena such as over-smoothing(Rong et al. 2020) and over-
squashing(Alon and Yahav 2021). Over-smoothing occurs
when an increase in the number of neural network layers
and iterations leads to node representations becoming overly

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

consistent and non-discriminatory. Over-squashing occurs
as long-distance message passing results in the compression
of numerous node features into the limited vector space of a
single node. These issues impair the efficient representation
of node features and consequently restrict the application
of graph neural networks to more intricate graph processing
tasks.

In recent years, employing the Transformer architecture
for graph data has emerged as a promising approach to
address these challenges. The Graph Transformer effec-
tively captures long-range dependencies among nodes via
its self-attention mechanism and strategically places atten-
tion on various nodes, thereby mitigating the effects of over-
smoothing and over-squashing to a certain extent. However,
Graph Transformer has been mostly applied to small-scale
graph data for graph classification tasks, such as molecular
classification(Ying et al. 2021; Hussain, Zaki, and Subrama-
nian 2021; Dwivedi and Bresson 2020). However, deploying
Graph Transformers on large-scale graph data presents sig-
nificant challenges.

On the one hand, a primary challenge is the development
of reasonable methods for embedding graph data. Due to
graph data’s irregularity, encoding it effectively is crucial
for its proper utilization by the Transformer architecture,
which necessitates the comprehensive extraction of nodes’
semantic information without sacrificing the intricate struc-
tural and positional details inherent in the graphs. On the
other hand, addressing the substantial computational costs
associated with the self-attention mechanism remains a sig-
nificant issue. When processing large-scale graphs, the time
and space complexity of existing Transformers increases
quadratically.

Two primary strategies exist for utilizing graph struc-
tural information: the first involves employing various po-
sitional encoding methods to integrate this information into
node representations. This approach transforms graph data
into sequential data enriched with structural information,
thereby facilitating processing by the Transformer archi-
tecture. Common positional encoding methods, such as
Laplace positional encoding(Dwivedi and Bresson 2020)
and random walk positional encoding(Dwivedi et al. 2021),
have proven to be both simple and effective. Additionally,
some positional encoding methods are trainable, such as
the Katz position encoding implemented in the DGT(Park

et al. 2022). Another innovative approach involves combin-
ing GNN with the Transformer architecture, which merges
node representations from both models in various ways, an
example being SAT(Li et al. 2021). Typically, merging GNN
with Transformer architectures proves more effective than
merely employing positional encodings.

Regarding the quadratic complexity arising from the
Transformer’s self-attention mechanism, solutions can be
broadly categorized into two types. One approach involves
sampling the entirety of graph nodes to reduce the number
of nodes processed by the model; this type of Graph Trans-
former is termed a sparse Graph Transformer, exemplified
by Gophormer(Zhao et al. 2021) and NAGphormer(Chen
et al. 2022). The other method entails the adoption of lin-
ear Graph Transformers, which simplify the computation
of self-attention, as demonstrated by Nodeformer(Wu et al.
2023b) and Difformer(Wu et al. 2023a).

Our work proposes a model that can be extended to large
graphs for node feature representation, and our main contri-
butions can be summarized as follows:

• We develop GNFormer, a Graph Transformer model that
integrates structural encoding, positional encoding, and
single-layer attention.

• We demonstrate the effectiveness and feasibility of GN-
Former through empirical evaluations on medium and
large-scale graph datasets.

Related Work
Graph Neural Networks. GNNs(Kipf and Welling 2016)
have advanced deep learning for graph-structured data by
enabling efficient extraction of both node- and graph-level
features. Graph Convolutional Networks (GCNs) aggre-
gate information from neighboring nodes, but struggle to
distinguish the relative importance of neighbors, limiting
their ability to capture complex node relationships. To ad-
dress this, Graph Attention Networks (GATs)(Veličković
et al. 2018) assign variable weights to neighbors, improving
flexibility in learning node dependencies. However, GATs
increase computational overhead due to attention mecha-
nisms. Jumping Knowledge Networks (JKNet)(Xu et al.
2018) further enhance GNNs by allowing flexible selec-
tion of information from multiple layers, adapting to dif-
ferent neighborhood sizes for central and peripheral nodes,
improving representation based on local structures. Addi-
tionally, Structure-aware Interactive Graph Neural Network
(SIGN)(Park et al. 2022) enhances molecular interaction
modeling, using specialized layers to capture spatial and
interaction-based features in protein-ligand binding affinity.
Positional Encoding. Positional encoding methods include
Laplacian positional encoding(Dwivedi and Bresson 2020),
Weisfeiler-Lehman encoding, and random walk encod-
ing(Dwivedi et al. 2021). Laplacian encoding rely on the
graph’s Laplacian matrix, which reflects the topological
structure of the graph. Through spectral decomposition of
the Laplacian matrix, these methods extract eigenvectors,
providing features that represent node positions. Such fea-
tures are further used to encode positional information, en-
hancing node representations within the graph. Weisfeiler-

Lehman encoding, derived from the Weisfeiler-Lehman al-
gorithm, focus on detecting isomorphic structures by itera-
tively aggregating neighborhood information over multiple
rounds, thereby classifying and labeling nodes. These la-
bels are then utilized for positional encoding. Besides, some
other positional encoding methods take distance into con-
sideration(You, Ying, and Leskovec 2019), such as short-
est path distances between nodes. This method captures the
structural relationships between nodes from a global per-
spective. Additionally, there is also research on trainable po-
sitional encodings(Dwivedi et al. 2022).
Graph Transformers. Graph Transformers have shown
significant promise for handling long-range dependencies
in graph-structured data. Graphormer(Ying et al. 2021)
adopts a Transformer-like architecture, integrating graph-
specific features such as node centrality and spatial relation-
ships to improve performance on large-scale graphs. Simi-
larly, GraphTrans(Wu et al. 2022) merges GNNs with self-
attention to learn global graph-level relationships, incorpo-
rating a novel readout mechanism. NodeFormer(Liu et al.
2023) addresses the challenge of scaling Transformer mod-
els to large graphs by implementing efficient message pass-
ing and random feature mapping, reducing the computa-
tional complexity inherent in attention-based models.

Given the challenges of scaling graph models to large
datasets, GNFormer combines the scalability of Transform-
ers with the structural advantages of GNNs. By incorpo-
rating structural encodings and attention mechanisms, GN-
Former efficiently captures both long-range dependencies
and local patterns in large graphs, making it particularly suit-
able for graph-level tasks. It also reduces the computational
overhead commonly associated with attention mechanisms,
offering a more scalable solution for processing complex
graph structures.

Proposed Solution
Overview.
We presents a Graph Transformer model named GNFormer,
which is scalable to large-scale graph scenarios and closely
integrated with Graph Neural Networks. The detailed archi-
tecture is shown in Figure 1. GNFormer consists of three
core modules: the structural encoding module, the positional
encoding module, and the single-layer global attention mod-
ule. The computational process of the model can be repre-
sented by the following equation 1 and 2:

Z(0) = (1− ws − wp)X
(0) + wsX

(s) + wpX
(P) (1)

Z = SGA(Z(0)) (2)
Where X(s) and X(P) represent the outputs of the struc-

tural encoding module and positional encoding module, re-
spectively, ws and wp are the corresponding weight param-
eters, and SGA(·) denotes the single-layer global attention
module. X(0), X(s), and X(P) are fused in a certain propor-
tion to obtain the node features with added structural and po-
sitional biases, serving as the input to the single-layer global
attention module, with the final output denoted as Z. The
model performs node classification tasks, outputting a se-
quence of length equal to the number of node categories,

Figure 1: GNFormer Model Architecture.

indicating the likelihood of nodes being predicted as various
categories.

Structural Encoding.
The structural encoding module is based on the GCN model
and stacks N graph convolutional layers according to the
task requirements. This module generates a vector identi-
cal in dimension to the node features, containing structural
bias information of the graph data.The input of the structural
encoding module consists of the raw features of the nodes
X(0) and the adjacency matrix A. The output dimensional-
ity of the structural encoding X(s) is consistent with the raw
features of the nodes. This moduls is defined as follows:

X(s) = SE
(
X(0), A

)
(3)

Positional Encoding.
The position encoding module is designed to extract posi-
tional bias information from graph data, which is used to
learn the positional relationships between nodes.

This module employs Katz positional encoding, compris-
ing a Katz matrix computation layer and an MLP. The con-
struction of Katz positional encoding is inspired by the Katz
index, which is calculated based on the collection of all pos-
sible paths. Specifically, it involves the direct summation of

the path sets, with an exponential decay factor applied ac-
cording to the length of the paths to assign greater weight to
shorter paths. This can be represented as follows:

Ã =

∞∑
k=1

βk−1Ak (4)

where β is the decay coefficient, and A is the adjacency
matrix of the graph. The i-th row of the adjacency matrix
represents the connectivity of the i-th node with all other
nodes. After weighted calculation, the resulting i-th row vec-
tor corresponds to the i-th node. By transposing the row vec-
tor corresponding to a node and using it as the input for a
Multilayer Perceptron (MLP), we obtain the Katz positional
encoding:

KatzPE(vi) = MLP
(
Ã[vi]

T
)

(5)

Single-layer Global Attention.
The calculation of global attention is based on the same prin-
ciple as self attention in Transformer, but without Softmax, it
is a simpler yet more effective way of calculating attention.
Removing this step can greatly simplify the calculation of
attention. The computation of single-layer global attention
can be described as follows:

Q = fQ(Z
(0)), ...Q̃ =

Q

||Q||F
(6)

K = fK(Z(0)), · · · K̃ =
K

||K||F
(7)

V = fV (Z
(0)) (8)

D = diag

(
1+

1

N
Q̃(K̃

⊤
1)

)
(9)

Z = αD−1

[
V +

1

N
Q̃(K̃

⊤
V)

]
+ (1− α)Z(0) (10)

Here, Z(0) represents the node feature matrix that has been
augmented with structural and positional biases, with di-
mensions [N, D], where N is the number of nodes and D
is the dimensionality of the node features. The terms fq , fk
and fv denote linear layers that are used to construct the
corresponding matrices for Q, K, and V . The notation ||·||F
indicates the Frobenius norm, which is employed to normal-
ize the matrices. The symbol 1 signifies an N-dimensional
vector of ones. The matrix D serves as a diagonal matrix
for regularization purposes, ensuring that there are no zeros
or very small values on its diagonal. The matrix Z is com-
posed of two parts: the first part enables the model to capture
the influence of other nodes, while the second part retains
the information of the central node. These two components
are combined through a hyperparameter, which effectively
forms a residual connection.

Experiments
To validate the effectiveness of our method, we conducted
extensive experiments using datasets of various sizes.

Experiment Setup
Datasets.First, we utilize three medium-scale graph datasets
and one large-scale dataset, namely Cora(Sen et al. 2008),
Squirrel, Chameleon(Rozemberczki, Allen, and Sarkar
2021), and ogbn-arxiv(Hu et al. 2020). For each dataset, we
standardize the graph data format during the preprocessing
stage, encompassing edge indices, edge features, node fea-
tures, the total number of nodes, as well as indices for the
training, validation, and test sets. The specifics of the intro-
duction and preprocessing for each dataset are detailed in
Table 1.
The Squirrel and Chameleon datasets are heterogeneous
web-page networks from Wikipedia, with nodes as pages
and edges as hyperlinks, classified by traffic. The ogbn-arxiv
dataset is a CS Arxiv citation network, with nodes represent-
ing papers and edges representing citations. It aims to pre-
dict paper subject areas across 40 domains, using a refined
partitioning method to resolve node overlap issues.

Dataset Node Count Edge Count Feature Dimension
Cora 2,708 5,278 1,433
Squirrel 2,223 46,998 2,089
Chameleon 890 8,854 2,325
ogbn-arxiv 169,343 1,166,243 128

Table 1: Detailed statistics of the datasets.

Baselines. To demonstrate the performance of our proposed
model on the node classification task, we compare GN-
Former with SOTA methods. We select the following mod-
els as the baseline for comparison based on different scale
of graphs: (1) On medium-sized graphs, we utilize graph
neural network-based models such as GCN, GAT, SGC,
JKNet, and SIGN, as well as graph transformer-based mod-
els Graphormer, GraphTrans, and Nodeformer as bench-
marks. We use three medium-sized graph datasets, Cora,
Squirrel, and Chameleon, for training, prediction, and eval-
uation. (2) On large graphs, we use MLP and the graph
transformer-based model Nodeformer that can be extended
to large graphs as benchmarks. We use the large-scale graph
dataset ogbn-arxiv for training, prediction, and evaluation.
Implementation Details. We built the model based on
Python and the deep learning framework PyTorch, and per-
formed model training and experimental testing on a GPU
server. The experimental equipment configuration informa-
tion used in this experiment is shown in Table 1.

Table 2: Experimental Equipment Configuration

Computational Framework Specifications
Python 3.7.16
PyTorch 1.12.1
CUDA 10.1
CPU Intel Gold 5220R
GPU A100
Operating System CentOS 7.9

Experiment Result
The results of our proposed method, as well as the other
baseline models, are presented in Table 1 for medium-scale
and large-scale graph datasets. Our model outperforms all
other methods across all metrics. Based on these experimen-
tal findings, we draw the following conclusions:

1) Medium-scale graph datasets: The performance of
various models on the Cora dataset is generally good, among
which the GNFormer model performs best with an aver-
age accuracy of 83.70%, which is about 2.1% higher than
the standard GCN model. On the Squirrel dataset, the per-
formance of all models generally declines, but GNFormer
still maintains the lead, reaching an average accuracy of
44.84%. The results on the Chameleon dataset further ver-
ify the strong performance of the GNFormer model, with
an average accuracy of 46.56%, ahead of all other mod-
els. This may indicate that the GNFormer model has ob-
vious advantages in processing medium-scale graph data,
especially when the data has a complex topological struc-
ture or feature distribution. It should be noted that the
two variants of Graphormer, GraphormerSMALLER and
GraphormerULTRASS SMALL, show poor results on these
three datasets, while GraphormerSMALL exhibits memory
overflow (OOM) problems, indicating that the model may
be overfitting due to its relatively complex structure and is
not efficient in memory usage, which may become a prob-
lem when processing larger-scale graph data. Overall, these
results provide concrete evidence to validate GNFormer as
a powerful learner for node category prediction. Compared
with other advanced GNNs and graph transformers, GN-
Former is highly competitive in most cases.

2) Large-scale graph datasets: Compared with tradi-
tional MLP models and Nodeformer, GNFormer shows sig-
nificant performance improvements. Specifically, the accu-
racy of the MLP model is 55.5%, while the accuracy of
Nodeformer is 59.90%, and GNFormer reaches 66.07%, far
exceeding the former two. This result highlights the ad-
vantage of GNFormer in processing large-scale graph data.
GNFormer combines structural encoding, position encoding
modules, and simple single-layer global attention. Experi-
ments have shown that such an architecture can handle the
dependencies of distant nodes on large graphs well without
huge memory and time overhead.

Ablation Study
Effect of Components To validate the design choices in our
proposed framework, we perform an ablation experiment by
removing three components individually: Structure encod-
ing module (GNFormer w/o SE), position encoding module
(GNFormer w/o PE), and single-layer global attention mod-
ule (GNFormer w/o SGA). The results are presented in Ta-
ble 1. We observe that the GNFormer model achieves the
best results overall. On the Cora dataset, the performance of
the GNFormer w/o PE and GNFormer w/o SGA variants is
slightly worse than the default GNFormer model, while the
GNFormer w/o SE variant, which removes the structure en-
coding module, has the largest performance degradation, by
about 12%. On the Chameleon dataset, the performance of

Table 3: Performance on Medium-Scale Graph Datasets

Model Cora Squirrel Chameleon
GCN 81.6 ± 0.4 38.6 ± 1.8 41.3 ± 3.0
GAT 83.0 ± 0.7 35.6 ± 2.1 39.2 ± 3.1
SGC 80.1 ± 0.2 39.3 ± 2.3 39.0 ± 3.3
JKNet 81.8 ± 0.5 39.4 ± 1.6 39.4 ± 3.8
SIGN 82.1 ± 0.3 40.7 ± 2.5 41.7 ± 2.2
GraphormerSMALLER 75.8 ± 1.1 40.9 ± 2.5 41.9 ± 2.8
GraphormerULTRASS SMALL 74.2 ± 0.9 39.9 ± 2.4 41.3 ± 2.8
GraphTransSMALL 80.7 ± 0.9 41.0 ± 2.8 42.8 ± 3.3
GraphTransULTRASS SMALL 81.7 ± 0.6 40.6 ± 2.4 42.2 ± 2.9
Nodeformer 82.2 ± 0.9 38.5 ± 1.5 34.7 ± 4.1
GNFormer 83.70 ± 0.48 44.84 ± 2.13 46.56 ± 3.15

Table 4: Performance on Large-Scale Graph Dataset

Model ogbn-arxiv
MLP 55.50 ± 0.23
Nodeformer 59.90 ± 0.42
GNFormer 66.07 ± 0.11

GNFormer w/o SE and GNFormer w/o PE is significantly
worse than that of GNFormer. On the ogbn-arxiv dataset,
there is no significant difference between the performance
of GNFormer w/o PE and GNFormer, but the performance
of GNFormer w/o SE and GNFormer w/o SGA is signifi-
cantly reduced.

Table 5: Results of Ablation Experiments

Model Cora Chameleon ogbn-arxiv
default 83.70 ± 0.48 46.56 ± 3.15 66.07 ± 0.11
w/o SE 71.26 ± 2.66 44.72 ± 2.83 57.18 ± 0.19
w/o PE 83.18 ± 0.42 43.51 ± 4.83 66.19 ± 0.11
w/o SGA 83.12 ± 0.46 46.72 ± 2.34 65.70 ± 0.30

Structural and Position Encoding Analysis The struc-
tural encoding module in GNFormer significantly impacts
model performance; its removal substantially degrades per-
formance. This module leverages graph neural networks to
extract structural bias from graph data, as validated by ab-
lation studies. Conversely, the position encoding module,
which employs the Katz matrix to derive positional infor-
mation from the adjacency matrix, offers minimal perfor-
mance gains. This could be attributed to the redundancy
with the structural encoding module, which also relies on
the adjacency matrix but integrates node features for a more
comprehensive extraction of graph data’s latent information.
The position encoding module’s sole reliance on adjacency
matrix-derived positional information is insufficient for ro-
bust graph embedding, underscoring the necessity to incor-
porate node feature embeddings.

Efficiency Study
We conducted a comparative analysis of the efficiency of
GNFormer against other graph Transformer models by

evaluating their training time, inference time, and GPU
memory consumption on the Cora dataset.
As presented in Table 1, GNFormer outperforms
Graphormer and GraphTrans in all three metrics, indi-
cating its superior efficiency. This efficiency is achieved
without compromising the model’s performance, thereby
highlighting the lightweight design of the GNFormer
architecture. The inclusion of the Katz position coding
module and the single-layer global attention mechanism
significantly contributes to this efficiency. The Katz position
coding leverages GPU acceleration for position encoding,
while the single-layer global attention mechanism stream-
lines the model by reducing the complexity of attention
operations across layers and heads. These features exem-
plify GNFormer as a simple, effective, and scalable graph
Transformer model, making it suitable for deployment in
large-scale graph scenarios.

Table 6: Comparison of the efficiency on Cora

Model Training time (ms) Inference time (ms) GPU usage (GB)
Graphormer 563.5 537.1 5.0
GraphTrans 160.4 40.2 3.8
GNFormer 76.7 65.8 1.0

Conclusion
We introduce GNFormer, a novel architecture that integrates
graph transformers (GTs) with graph pooling to achieve ef-
ficient node classification. Our approach tackles two preva-
lent issues associated with traditional GTs: the interference
from noisy distant neighbors and the quadratic growth in
computational complexity relative to the number of nodes.
Through rigorous testing on 13 diverse graph datasets, we
demonstrate that GNFormer not only surpasses current GTs
but also outperforms other graph neural networks. Despite
these impressive results, there is still scope for enhancement
in GNFormer. For instance, future work could focus on: 1)
devising an effective strategy to synergize the proposed local
pooling augmented attention with global pooling augmented
attention, and 2) integrating additional techniques to bolster
performance on large-scale graph datasets.

References
Alon, U.; and Yahav, E. 2021. On the Bottleneck of Graph
Neural Networks and its Practical Implications. In Interna-
tional Conference on Learning Representations.
Chen, J.; Gao, K.; Li, G.; and He, K. 2022. NAGphormer:
Neighborhood Aggregation Graph Transformer for Node
Classification in Large Graphs. CoRR, abs/2206.04910.
Devlin, J. 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.
Dwivedi, V. P.; and Bresson, X. 2020. A Generalization of
Transformer Networks to Graphs.
Dwivedi, V. P.; Joshi, C. K.; Luu, A. T.; Laurent, T.; Ben-
gio, Y.; and Bresson, X. 2022. Benchmarking Graph Neural
Networks. arXiv:2003.00982.
Dwivedi, V. P.; Luu, A. T.; Laurent, T.; Bengio, Y.; and Bres-
son, X. 2021. Graph Neural Networks with Learnable Struc-
tural and Positional Representations.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. Advances in neural
information processing systems, 33: 22118–22133.
Hussain, M. S.; Zaki, M. J.; and Subramanian, D. 2021.
Edge-augmented Graph Transformers: Global Self-attention
is Enough for Graphs.
Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Classi-
fication with Graph Convolutional Networks.
Li, S.; Zhou, J.; Xu, T.; Huang, L.; Wang, F.; Xiong, H.;
Huang, W.; Dou, D.; and Xiong, H. 2021. Structure-aware
Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity.
Liu, C.; Zhan, Y.; Ma, X.; Ding, L.; Tao, D.; Wu, J.; and
Hu, W. 2023. Gapformer: Graph Transformer with Graph
Pooling for Node Classification. 2196–2205.
Park, J.; Yun, S.; Park, H. J.; Kang, J.; Jeong, J.; Kim, K. H.;
Ha, J. W.; and Kim, H. J. 2022. Deformable Graph Trans-
former. ArXiv, abs/2206.14337.
Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In International Conference on Learning
Representations.
Rozemberczki, B.; Allen, C.; and Sarkar, R. 2021. Multi-
scale attributed node embedding. Journal of Complex Net-
works, 9(2): cnab014.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. arXiv.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018. Graph Attention Networks.
arXiv:1710.10903.
Wu, Q.; Yang, C.; Zhao, W.; He, Y.; Wipf, D.; and Yan, J.
2023a. DIFFormer: Scalable (Graph) Transformers Induced
by Energy Constrained Diffusion. arXiv e-prints.

Wu, Q.; Zhao, W.; Li, Z.; Wipf, D.; and Yan, J. 2023b. Node-
Former: A Scalable Graph Structure Learning Transformer
for Node Classification. arXiv:2306.08385.
Wu, Z.; Jain, P.; Wright, M. A.; Mirhoseini, A.; Gonzalez,
J. E.; and Stoica, I. 2022. Representing Long-Range Context
for Graph Neural Networks with Global Attention.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K. I.;
and Jegelka, S. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. arXiv.
Ying, C.; Cai, T.; Luo, S.; Zheng, S.; and Liu, T. Y. 2021.
Do Transformers Really Perform Bad for Graph Represen-
tation?
You, J.; Ying, R.; and Leskovec, J. 2019. Position-aware
Graph Neural Networks. arXiv:1906.04817.
Zhao, J.; Li, C.; Wen, Q.; Wang, Y.; Liu, Y.; Sun, H.; Xie,
X.; and Ye, Y. 2021. Gophormer: Ego-Graph Transformer
for Node Classification.

